首頁(yè) >> 新聞中心 >>行業(yè)科技 >> 一種精確測(cè)定超短基線真方位角的方法
详细内容

一種精確測(cè)定超短基線真方位角的方法


      工程測(cè)繪中,基線方向常用高斯投影面坐標(biāo)方位角來(lái)表示,在特定情況下則需要測(cè)定基線的真方位角,如地質(zhì)與地球物理勘探、 航空、 航海、 炮兵射擊雷達(dá)定向等。 所謂真方向角,即某點(diǎn)指向北極的方向線叫真北方向線,也叫真子午線,從該點(diǎn)的真北方向線起,依順時(shí)針?lè)较虻侥繕?biāo)方向線間的水平夾角,叫該點(diǎn)的真方位角勺。 確定一條基線真方位角的方法,通常有陀螺全站儀法、 高斯投影改正法。 由控制測(cè)量可知,求解基線坐標(biāo)方位角,兩端已知點(diǎn)間距越長(zhǎng),解算越精確,反之,邊長(zhǎng)越短,其坐標(biāo)方位角精確求解越困難。 同樣,求解真方位角亦是如此,例如在針對(duì)飛機(jī)慣導(dǎo)系統(tǒng)進(jìn)行檢校與標(biāo)定時(shí),其長(zhǎng)度僅幾十米,若要精確解算其真方位角,是極其困難的,因?yàn)樵诙叹嚯x中,GNSS觀測(cè)天線相位中心偏差、儀器校準(zhǔn)誤差、觀測(cè)星歷等因素對(duì)其方位計(jì)算影響較大。 在超短基線定位領(lǐng)域,有學(xué)者已經(jīng)做了許多相關(guān)研究工作,如:李瑜等以3種不同長(zhǎng)度的基線,對(duì)比分析了PPE軟件24h數(shù)據(jù)的處理精度同;王德剛等著重分析了超短基線定位的誤差來(lái)源⑺;楊貴海等從測(cè)距誤差、測(cè)深誤差著手,提高了測(cè)量設(shè)備的定位精度劇。 類似上述的研究不少,但前人或從軟件測(cè)試角度,或從仿真技術(shù)入手,主要探討的是點(diǎn)位精度,而非真方位角。此外,傳統(tǒng)高斯投影法在求解真方位角時(shí),需將大地坐標(biāo)投影至高斯平面,再反算其坐標(biāo)方位角、 子午線收斂角、 方向改化,方可獲得真方位角,該過(guò)程繁瑣、解算易出偏差、 實(shí)用性不強(qiáng)。

      為精確、 便捷求解超短基線真方位角,本研究基于站心地平坐標(biāo)系的基礎(chǔ)理論,結(jié)合某飛機(jī)慣導(dǎo)檢驗(yàn)項(xiàng)目,分析、 探討了站心地平坐標(biāo)系在飛機(jī)慣導(dǎo)檢驗(yàn)測(cè)試中求解超短基線真方位角的實(shí)踐運(yùn)用。 通過(guò)與傳統(tǒng)高斯投影改正法的對(duì)比,該方法在精度上無(wú)損失,且求解便捷,提高了實(shí)用性。

      2站心地平坐標(biāo)系計(jì)算模型站心地平坐標(biāo)系以測(cè)站P為原點(diǎn),以P點(diǎn)的法線為Z軸,取大地天頂距方向?yàn)檎较颉?地表上,以子午線方向?yàn)閤軸,y軸與x軸、 z軸正交,它與空間直角坐標(biāo)系所屬的兩種坐標(biāo)系的坐標(biāo)原點(diǎn)及3個(gè)坐標(biāo)軸的指向均不同,存在著平移旋轉(zhuǎn)的關(guān)系。 站心地平坐標(biāo)系一般用于深空大地測(cè)量研究,由于真方位是確定單個(gè)點(diǎn)位到另一點(diǎn)位的方位,因此本文利用站心地平坐標(biāo)系的定義對(duì)兩點(diǎn)間的方位進(jìn)行求解。 基于該計(jì)算理論,可推知用于求解基線邊真方位角的計(jì)算模型。

81110b8c-7407-46d2-ac77-6c041c6cb65e.png

圖1空間直角坐標(biāo)系與站心地平坐標(biāo)系示意圖

3計(jì)算實(shí)例

3. 1基于站心地平坐標(biāo)系的計(jì)算

      基于上述站心地平坐標(biāo)系計(jì)算模型,以某機(jī)場(chǎng)超短基線真方位角作為工程背景,本文在另一測(cè)區(qū)進(jìn)行實(shí)地布點(diǎn)與觀測(cè),進(jìn)行了前期案例的解算試驗(yàn)。 工程待求基線長(zhǎng)50 m,要求觀測(cè)精度達(dá)0.005。 (18〃)。 本文實(shí)際布設(shè)邊長(zhǎng)30-40 m,共布設(shè)12條基線,并進(jìn)行了實(shí)地GNSS觀測(cè),觀測(cè)與真方位角的解算結(jié)果見(jiàn)表1。 首先利用GNSS觀測(cè),測(cè)定化點(diǎn)的大地坐標(biāo)(B"),計(jì)算每條基線化Q'空間大地宜角坐標(biāo),獲取化與G'兩點(diǎn)的
      空間大地直角坐標(biāo)差(AX,Ar,AZ),利用站心地平坐標(biāo)系真方位角的計(jì)算模型,求得每條長(zhǎng)基線Pi Q'的真方位角;其次,利用標(biāo)稱精度為0. 5"的TC2003全站儀,對(duì)a進(jìn)行觀測(cè)(長(zhǎng)基線化Q'與超短基線E Q的夾角,觀測(cè)兩個(gè)測(cè)回);最后根據(jù)長(zhǎng)基線真北方位與a,解得超短基線的真方位角。

45fbd3a6-fca9-458c-a96b-712153f7c59c.png

表1站心地平坐標(biāo)系真方位角觀測(cè)與解算結(jié)果

359dcf0d-d28e-48a8-85cc-418fef9747b9.png

3.2基于高斯投影法的驗(yàn)證

      關(guān)于上述基于站心地平坐標(biāo)系求解超短基線真方位角的正確性,本文運(yùn)用傳統(tǒng)高斯投影法進(jìn)行了驗(yàn)證。 高斯投影法即將橢球面上兩點(diǎn)的大地坐標(biāo)投影至高斯平面,獲取該基線的坐標(biāo)方位角,將其經(jīng)過(guò)子午線收斂角與方向改化后,可獲得該基線的真方位角。 本驗(yàn)證實(shí)例采用WGS 84橢球,計(jì)算子午線收斂角時(shí)的中央子午線經(jīng)度為102。 ,計(jì)算結(jié)果見(jiàn)表2,同樣,先計(jì)算每條長(zhǎng)基線邊匕的真方位角,其投影后的坐標(biāo)方位角與化點(diǎn)處的子午線收斂角,以及橢球面圓弧投影至平面后產(chǎn)生的方向改化三者之和即為化Q/的真方位角,針對(duì)該繁瑣的討算過(guò)程,本文借助VC++6.0平臺(tái),編制了該過(guò)程的求解程序,最后通過(guò)«值可宜接將其真方位角引至超短揺PQ。

9840ae1d-5c2c-4f51-bd63-fa47441cb0c9.png

表2高斯投影法驗(yàn)證結(jié)果

4 結(jié)束語(yǔ)

      站心地平坐標(biāo)系通常用于深空大地測(cè)量,但鑒于其坐標(biāo)系原點(diǎn)設(shè)于測(cè)站中心這一顯著特征,有助于引出該基線另一端點(diǎn)在該站心地平坐標(biāo)系中的坐標(biāo),從而快速解得基線真方位角。 從計(jì)算模型看,該方法與高斯投影法最顯著的不同,是它規(guī)避了中間求解子午線收斂角與方向改化的繁瑣環(huán)節(jié)。 而本文方法,雖需求解基線端點(diǎn)的空間宜角坐標(biāo),但在實(shí)踐中,其GNSS靜態(tài)解算成果已含有該基線向量,即公式(1)中求得兩點(diǎn)在空間宜角坐標(biāo)系下的坐標(biāo)差,它為整體真方位角的求解節(jié)省了巨大的工作量,可宜接利用公式(5)與真方位角計(jì)算公式,解算基線真方位角。 從計(jì)算環(huán)節(jié)看,高斯投影法計(jì)算繁瑣、 實(shí)用性弱,本文所用方法簡(jiǎn)單、 快捷、 實(shí)用性強(qiáng);精度上,兩種方法互差均控制在1"以內(nèi),平均差值0. 397〃,其真方位角結(jié)果完全滿足0. 005。 ( 18〃 )的精度要求。 因此,基于站心地平坐標(biāo)系的超短基線真方位角計(jì)算方法較傳統(tǒng)計(jì)算方法優(yōu)勢(shì)明顯,可用于同類項(xiàng)目的實(shí)踐生產(chǎn)與研究。

同時(shí),也應(yīng)看到,上述均是在內(nèi)業(yè)解算方案上的探討,而所有測(cè)量項(xiàng)目,其精度主要取決于外場(chǎng)觀測(cè),本研究為確保觀測(cè)精度,所有觀測(cè)點(diǎn)均使用了強(qiáng)制觀測(cè)墩,這一方案不但大大提高了測(cè)量成本,也使得測(cè)量效率變得極為低下。 因此,在不使用強(qiáng)制觀測(cè)墩的情況下,如何高效、 確保觀測(cè)精度,是今后需要關(guān)注的方向。

參考文獻(xiàn)

[1]施一民.現(xiàn)代大地控制測(cè)量[M].北京:測(cè)繪出版社,2003.

[2] 王解先,劉慧芹,唐立軍.不同站心地平坐標(biāo)系下的坐標(biāo)歸算[J].工程勘察,2005(5) :58-60.
[3] 孔祥元,郭際明,劉宗泉.大地測(cè)量學(xué)基礎(chǔ)[M].武漢:武漢大學(xué)出版社,2001.
[4] 孔祥元,梅是義.控制測(cè)量學(xué)[M].武漢:武漢大學(xué)出版社,2001.
[5] 季凱敏,王解先.利用大地坐標(biāo)計(jì)算真方位角的兩種方法[J].工程勘察,2009(4) :84-86.
[6] 李瑜,王勇紅,張博,等.Trimble GNSS數(shù)據(jù)處理引擎(PPE)在GNSS中-短基線定位中的應(yīng)用分析[J].測(cè)繪通報(bào),2013(2):11-14.


班寧產(chǎn)品匯總

seo seo